MR Reduces the Effects of Kidney Injury

MR Reduces the Effects of Kidney Injury

in post kidneyDid you know that kidney disease is one of the major causes of early mortality, morbidity, and rising medical costs in the United States? Now, more than ever, it is crucial to find a way to delay or avoid this devastating disease. OFAS and other researchers have proven that methionine restriction extends the lifespan of several species, and although studies have been conducted on various rodent organs, the effects of MR on kidneys are not well known. A study conducted by the Orentreich Foundation’s Associate Science Director, Dr. Gene Ables, has shown that MR reduced the effects of kidney injury by suppressing inflammation and fibrosis mechanisms. This, in turn, delays the progression of kidney disease.

When protein is ingested, protein waste products are created. Healthy kidneys have millions of nephrons that filter this waste, which then leaves the body in urine. Unhealthy kidneys lose the ability to remove protein waste, and it starts to build up in the blood. One way to prevent this is by putting patients with chronic kidney disease on low-protein diets. Methionine restrictive diets offer the alternative of simulating a low-protein diet without actually reducing overall protein intake, which is done through the increased consumption of plant-based foods instead of animal-based foods. It is recommended that future studies that investigate the effects of MR on kidney function should be done with older mice in order to include the effects of age and provide more insight.

Dietary methionine restriction modulates renal response and attenuates kidney injury in mice

Cooke DOuattara AAbles GP

FASEB J. 2017 Oct.

PMID: 28970255

Methionine restriction (MR) extends the lifespan across several species, such as rodents, fruit flies, roundworms, and yeast. MR studies have been conducted on various rodent organs, such as liver, adipose tissue, heart, bones, and skeletal muscle, to elucidate its benefits to the healthspan; however, studies of the direct effect of MR on kidneys are lacking. To investigate the renal effects of MR, we used young and aged unilateral nephrectomized and 5/6 nephrectomized (5/6Nx) mice. Our studies indicated that MR mice experienced polydipsia and polyuria compared with control-fed counterparts. Urine albumin, creatinine, albumin-to-creatinine ratio, sulfur amino acids, and electrolytes were reduced in MR mice. Kidneys of MR mice up-regulated genes that are involved in ion transport, such as Aqp2Scnn1a, and Slc6a19, which indicated a response to maintain osmotic balance. In addition, we identified renoprotective biomarkers that are affected by MR, such as clusterin and cystatin C. Of importance, MR attenuated kidney injury in 5/6Nx mice by down-regulating inflammation and fibrosis mechanisms. Thus, our studies in mice show the important role of kidneys during MR in maintaining osmotic homeostasis. Moreover, our studies also show that the MR diet delays the progression of kidney disease.—Cooke, D., Ouattara, A., Ables, G. P. Dietary methionine restriction modulates renal response and attenuates kidney injury in mice.