The role of autophagy in the regulation of yeast life span

Tyler JK, Johnson JE

Ann. N. Y. Acad. Sci. 2018 Jan;

PMID: 29363766

 

The goal of the aging field is to develop novel therapeutic interventions that extend human health span and reduce the burden of age-related disease. While organismal aging is a complex, multifactorial process, a popular theory is that cellular aging is a significant contributor to the progressive decline inherent to all multicellular organisms. To explore the molecular determinants that drive cellular aging, as well as how to retard them, researchers have utilized the highly genetically tractable budding yeast Saccharomyces cerevisiae. Indeed, every intervention known to extend both cellular and organismal health span was identified in yeast, underlining the power of this approach. Importantly, a growing body of work has implicated the process of autophagy as playing a critical role in the delay of aging. This review summarizes recent reports that have identified a role for autophagy, or autophagy factors in the extension of yeast life span. These studies demonstrate (1) that yeast remains an invaluable tool for the identification and characterization of conserved mechanisms that promote cellular longevity and are likely to be relevant to humans, and (2) that the process of autophagy has been implicated in nearly all known longevity-promoting manipulations and thus represents an ideal target for interventions aimed at improving human health span.

https://www.ncbi.nlm.nih.gov/pubmed/29363766

The integrated stress response in budding yeast lifespan extension

Postnikoff SDL, Johnson JE, Tyler JK

Microb Cell 2017 Oct;4(11):368-375

PMID: 29167799

 

Aging is a complex, multi-factorial biological process shared by all living organisms. It is manifested by a gradual accumulation of molecular alterations that lead to the decline of normal physiological functions in a time-dependent fashion. The ultimate goal of aging research is to develop therapeutic means to extend human lifespan, while reducing susceptibility to many age-related diseases including cancer, as well as metabolic, cardiovascular and neurodegenerative disorders. However, this first requires elucidation of the causes of aging, which has been greatly facilitated by the use of model organisms. In particular, the budding yeast Saccharomyces cerevisiae has been invaluable in the identification of conserved molecular and cellular determinants of aging and for the development of approaches to manipulate these aging determinants to extend lifespan. Strikingly, where examined, virtually all means to experimentally extend lifespan result in the induction of cellular stress responses. This review describes growing evidence in yeast that activation of the integrated stress response contributes significantly to lifespan extension. These findings demonstrate that yeast remains a powerful model system for elucidating conserved mechanisms to achieve lifespan extension that are likely to drive therapeutic approaches to extend human lifespan and healthspan.

https://www.ncbi.nlm.nih.gov/pubmed/29167799

Pleiotropic responses to methionine restriction

Ables GP, Johnson JE

Exp. Gerontol. 2017 Jan;

PMID: 28108330

 

Methionine restriction (MR) extends lifespan across different species. The main responses of rodent models to MR are well-documented in adipose tissue (AT) and liver, which have reduced mass and improved insulin sensitivity, respectively. Recently, molecular mechanisms that improve healthspan have been identified in both organs during MR. In fat, MR induced a futile lipid cycle concomitant with beige AT accumulation, producing elevated energy expenditure. In liver, MR upregulated fibroblast growth factor 21 and improved glucose metabolism in aged mice and in response to a high-fat diet. Furthermore, MR also reduces mitochondrial oxidative stress in various organs such as liver, heart, kidneys, and brain. Other effects of MR have also been reported in such areas as cardiac function in response to hyperhomocysteinemia (HHcy), identification of molecular mechanisms in bone development, and enhanced epithelial tight junction. In addition, rodent models of cancer responded positively to MR, as has been reported in colon, prostate, and breast cancer studies. The beneficial effects of MR have also been documented in a number of invertebrate model organisms, including yeast, nematodes, and fruit flies. MR not only promotes extended longevity in these organisms, but in the case of yeast has also been shown to improve stress tolerance. In addition, expression analyses of yeast and Drosophila undergoing MR have identified multiple candidate mediators of the beneficial effects of MR in these models. In this review, we emphasize other in vivo effects of MR such as in cardiovascular function, bone development, epithelial tight junction, and cancer. We also discuss the effects of MR in invertebrates.

https://www.ncbi.nlm.nih.gov/pubmed/28108330