Strict Standards: Redefining already defined constructor for class googlefonts in /home/orentrei/public_html/wp-content/plugins/wp-google-fonts/google-fonts.php on line 140
Publications | OFAS

Methionine metabolism influences genomic architecture and gene expression through H3K4me3 peak width

Dai Z, Mentch SJ, Gao X, Nichenametla SN, Locasale JW

Nat Commun 2018 May;9(1):1955

PMID: 29769529


Nutrition and metabolism are known to influence chromatin biology and epigenetics through post-translational modifications, yet how this interaction influences genomic architecture and connects to gene expression is unknown. Here we consider, as a model, the metabolically-driven dynamics of H3K4me3, a histone methylation mark that is known to encode information about active transcription, cell identity, and tumor suppression. We analyze the genome-wide changes in H3K4me3 and gene expression in response to alterations in methionine availability in both normal mouse physiology and human cancer cells. Surprisingly, we find that the location of H3K4me3 peaks is largely preserved under methionine restriction, while the response of H3K4me3 peak width encodes almost all aspects of H3K4me3 biology including changes in expression levels, and the presence of cell identity and cancer-associated genes. These findings may reveal general principles for how nutrient availability modulates specific aspects of chromatin dynamics to mediate biological function.

Sulfur amino acid restriction-induced changes in redox-sensitive proteins are associated with slow protein synthesis rates

Nichenametla SN, Mattocks DAL, Malloy VL, Pinto JT

Ann. N. Y. Acad. Sci. 2018 Jan;

PMID: 29377163


The mechanisms underlying life span extension by sulfur amino acid restriction (SAAR) are unclear. Cysteine and methionine are essential for the biosynthesis of proteins and glutathione (GSH), a major redox buffer in the endoplasmic reticulum (ER). We hypothesized that SAAR alters protein synthesis by modulating the redox milieu. Male F344-rats were fed control (CD: 0.86% methionine without cysteine) and SAAR diets (0.17% methionine without cysteine) for 12 weeks. Growth rates, food intake, cysteine and GSH levels, proteins associated with redox status and translation, and fractional protein synthesis rates (FSRs) were determined in liver. Despite a 40% higher food intake, growth rates for SAAR rats were 27% of those fed CD. Hepatic free cysteine in SAAR rats was 55% compared with CD rats. SAAR altered tissue distribution of GSH, as hepatic and erythrocytic levels were 56% and 196% of those in CD rats. Lower GSH levels did not induce ER stress (i.e., unchanged expression of Xbp1s , Chop, and Grp78), but activated PERK and its substrates eIF2-α and NRF2. SAAR-induced changes in translation-initiation machinery (higher p-eIF2-α and 4E-BP1, and lower eIF4G-1) resulted in slower protein synthesis rates (53% of CD). Proteins involved in the antioxidant response (NRF2, KEAP1, GCLM, and NQO1) and protein folding (PDI and ERO1-α) were increased in SAAR. Lower FSR and efficient protein folding might be improving proteostasis in SAAR.

The role of autophagy in the regulation of yeast life span

Tyler JK, Johnson JE

Ann. N. Y. Acad. Sci. 2018 Jan;

PMID: 29363766


The goal of the aging field is to develop novel therapeutic interventions that extend human health span and reduce the burden of age-related disease. While organismal aging is a complex, multifactorial process, a popular theory is that cellular aging is a significant contributor to the progressive decline inherent to all multicellular organisms. To explore the molecular determinants that drive cellular aging, as well as how to retard them, researchers have utilized the highly genetically tractable budding yeast Saccharomyces cerevisiae. Indeed, every intervention known to extend both cellular and organismal health span was identified in yeast, underlining the power of this approach. Importantly, a growing body of work has implicated the process of autophagy as playing a critical role in the delay of aging. This review summarizes recent reports that have identified a role for autophagy, or autophagy factors in the extension of yeast life span. These studies demonstrate (1) that yeast remains an invaluable tool for the identification and characterization of conserved mechanisms that promote cellular longevity and are likely to be relevant to humans, and (2) that the process of autophagy has been implicated in nearly all known longevity-promoting manipulations and thus represents an ideal target for interventions aimed at improving human health span.

Bone marrow adipocytes.

Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T, Fretz JA, Lindskog D, Kaplan JL, Ables GP, Rodeheffer MS, Rosen CJ.

Adipocyte. 2017 Jul 3;6(3):193-204.

PMID: 28872979

Adipocytes were identified in human bone marrow more than a century ago, yet until recently little has been known about their origin, development, function or interactions with other cells in the bone marrow. Little functional significance has been attributed to these cells, a paradigm that still persists today. However, we now know that marrow adipose tissue increases with age and in response to a variety of physiologic induction signals. Bone marrow adipocytes have recently been shown to influence other cell populations within the marrow and can affect whole body metabolism by the secretion of a defined set of adipokines. Recent research shows that marrow adipocytes are distinct from white, brown and beige adipocytes, indicating that the bone marrow is a distinct adipose depot. This review will highlight recent data regarding these areas and the interactions of marrow adipose tissue (MAT) with cells within and outside of the bone marrow.


The integrated stress response in budding yeast lifespan extension

Postnikoff SDL, Johnson JE, Tyler JK

Microb Cell 2017 Oct;4(11):368-375

PMID: 29167799


Aging is a complex, multi-factorial biological process shared by all living organisms. It is manifested by a gradual accumulation of molecular alterations that lead to the decline of normal physiological functions in a time-dependent fashion. The ultimate goal of aging research is to develop therapeutic means to extend human lifespan, while reducing susceptibility to many age-related diseases including cancer, as well as metabolic, cardiovascular and neurodegenerative disorders. However, this first requires elucidation of the causes of aging, which has been greatly facilitated by the use of model organisms. In particular, the budding yeast Saccharomyces cerevisiae has been invaluable in the identification of conserved molecular and cellular determinants of aging and for the development of approaches to manipulate these aging determinants to extend lifespan. Strikingly, where examined, virtually all means to experimentally extend lifespan result in the induction of cellular stress responses. This review describes growing evidence in yeast that activation of the integrated stress response contributes significantly to lifespan extension. These findings demonstrate that yeast remains a powerful model system for elucidating conserved mechanisms to achieve lifespan extension that are likely to drive therapeutic approaches to extend human lifespan and healthspan.

Dietary methionine restriction modulates renal response and attenuates kidney injury in mice

Cooke DOuattara AAbles GP

FASEB J. 2017 Oct.

PMID: 28970255

Methionine restriction (MR) extends the lifespan across several species, such as rodents, fruit flies, roundworms, and yeast. MR studies have been conducted on various rodent organs, such as liver, adipose tissue, heart, bones, and skeletal muscle, to elucidate its benefits to the healthspan; however, studies of the direct effect of MR on kidneys are lacking. To investigate the renal effects of MR, we used young and aged unilateral nephrectomized and 5/6 nephrectomized (5/6Nx) mice. Our studies indicated that MR mice experienced polydipsia and polyuria compared with control-fed counterparts. Urine albumin, creatinine, albumin-to-creatinine ratio, sulfur amino acids, and electrolytes were reduced in MR mice. Kidneys of MR mice up-regulated genes that are involved in ion transport, such as Aqp2Scnn1a, and Slc6a19, which indicated a response to maintain osmotic balance. In addition, we identified renoprotective biomarkers that are affected by MR, such as clusterin and cystatin C. Of importance, MR attenuated kidney injury in 5/6Nx mice by down-regulating inflammation and fibrosis mechanisms. Thus, our studies in mice show the important role of kidneys during MR in maintaining osmotic homeostasis. Moreover, our studies also show that the MR diet delays the progression of kidney disease.—Cooke, D., Ouattara, A., Ables, G. P. Dietary methionine restriction modulates renal response and attenuates kidney injury in mice.